Title: Using dynamic field theory to bridge brain and behavior

Abstract:
Dynamic field theory is a class of dynamic systems models that uses non-linear differential equations to simulate real-time neural population dynamics. This modeling framework has a robust history explaining and predicting different aspects of behavior such as working memory and task-switching. In this presentation, I'll discuss how we have begun using this framework to understand neural processing by simulating the hemodynamic response.

Bio:
Aaron Buss is an assistant professor in the Department of Psychology. He studies executive function in early childhood and adulthood using a combination of behavioral, neuroimaging, and computational tools. He received his Ph.D. at the University of Iowa.